Conversion of 2-Chloroallylamines into Heterocyclic Compounds. Part I. 2-Methylindoles, 1,5,6,7-Tetrahydro-3-methylindol-4-ones, and Related Heterocycles

By Brian G. McDonald and George R. Proctor,* Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL

Abstract

Heating several N -(2-chloroallyl)anilines with polyphosphoric acid at $100^{\circ} \mathrm{C}$ or with boron trifluoride-methanol at at $150^{\circ} \mathrm{C}$ gave 2-methylindoles. 2-Methyloxazolo[3.2-a]quinolin-5-one, imidazo[1.2-a]pyridine, and 2-methyl-pyrrolo[3,2-c]quinolines were similarly obtained from N -(2-chloroallyl)-4-hydroxyquinolin- 2 -one, 2 - (2 -chloroallylamino) pyridine and 4-[N -(2-chloroallyl)-ethylamino]- and -anilino]-quinolines, respectively. 1-Ethyl and 1 -aryl-1,5,6,7-tetrahydro-3-methyl-6,6-dimethylindol-4-ones were obtained from the corresponding dimedone enamines on treatment with polyphosphoric acid. 3-Acetonyl-2.4.6-trimethylaniline was obtained in excellent yield from N-(2-chloroallyl)-2,4,6-trimethylaniline.

Treatment of N-(2-halogenoallyl)anilines with Lewis acids gives 2-methylindoles. ${ }^{1-4}$ The conditions used vary in severity from anhydrous hydrogen fluoride ${ }^{\mathbf{1}}$ under pressure at $160^{\circ} \mathrm{C}$ to boron fluoride-methanol ${ }^{3}$ at $150{ }^{\circ} \mathrm{C}$. Polyphosphoric acid at $175-180^{\circ} \mathrm{C}$ has also been recommended. ${ }^{2}$ We became interested in this process accidentally, ${ }^{4}$ discovering that some N-(2chloroallyl)anilines gave 2 -methylindoles when heated at $c a .100^{\circ} \mathrm{C}$ with an excess of polyphosphoric acid. We now report briefly our results with simple indoles and the extension of this process to some more complex examples.

The N-(2-halogenoallyl) derivatives of aniline, N methylaniline, m-anisidine, p-anisidine, p-chloroaniline,

[^0]2-aminobiphenyl, and methyl 3 -anilinopropionate all gave the corresponding 2-methylindoles after being heated and stirred with polyphosphoric acid at 95$105{ }^{\circ} \mathrm{C}$. The yields are no improvement on those previously reported, but in the case of m-anisidine a separable mixture (25%) of 4 - and 6 -methoxy-2-methylindoles was obtained; at higher temperatures the products decomposed. 5-Methoxy-2-methylindole was never obtained completely free from starting material (longer reaction times led to decomposition) and the $\mathrm{BF}_{3}-\mathrm{MeOH}$ reagent is therefore preferable. ${ }^{3}$ The product (I) from ethyl 3-[N-(2-chloroallyl)anilino $]$ propionate could not be further cyclised [to (II)], although treatment of the amino-acid (III) gave the azepinoindole
${ }^{5}$ C. George, E. W. Gill, and J. A. Hudson, J. Chem. Soc. (C), 1970, 74.

- B. McDonald, A. McLean, and G. R. Proctor, J.C.S. Chem. Comm., 1973, 208.
(IV), albeit in low yield. There are precedents ${ }^{5}$ for retro-Michael reactions in molecules such as (I); this side reaction, causing loss of the side chain, is not possible in compound (III).

III

(IV)

(II)

(I)

(III)

(III)

The yield (41%) of 2-methyl-7-phenylindole obtained with polyphosphoric acid is inferior to that (60%) obtained by using $\mathrm{BF}_{3}-\mathrm{MeOH}$ and in both the cases of methyl anthranilate and ethyl p-aminobenzoate, polyphosphoric acid fails whereas the $\mathrm{BF}_{3}-\mathrm{MeOH}$ treatment gives acceptable yields of the corresponding 7-methoxy-carbonyl- and 5 -methoxycarbonyl-2-methylindole, respectively. 2-Methyl-5-nitroindole could not be obtained by use of either reagent, although it was said ${ }^{1}$ to be produced by using hydrogen fluoride under pressure.

The accessibility of the N-(2-chloroallyl) compounds from commercially available 2,3 -dichloropropene and the simplicity of the cyclisation operations made it attractive to extend this work to more complex amines. Thus the quinolines ($\mathrm{V} ; \mathrm{R}=\mathrm{Et}$ or Ph) gave the pyrroloquinolines (VI; $\mathrm{R}=\mathrm{Et}$ or Ph) in moderate yields but the azepine derivatives [(VII)-(IX); $\mathrm{R}=2$ chloroallyl] gave no cyclisation products.

(IIII)

(IIII)

(IX)
N-(2-Chloroallyl)-2,4,6-trimethylaniline was converted in very high yield into 3 -acetonyl-2,4,6-trimethylaniline (X) on heating with polyphosphoric acid. This rearrangement ${ }^{4}$ was unexpected but the product is potentially useful for the synthesis of bridged-ring compounds. Although N-(2-chloroallyl)anthranilic acid reacted in $\mathrm{BF}_{3}-\mathrm{MeOH}$ to give, not a lactone, but the corresponding indole (as methyl ester) in 75% yield; the product from the quinolone (XI) proved to be the oxazoloquinolone (XII). Presumably the mechanism
${ }^{5}$ J. A. C. Allison, J. T. Braunholtz, and F. G. Mann, J. Chem. Soc., 1954, 403.
${ }^{6}$ M. F. Ansell and M. H. Palmer, Quart. Rev., 1964, 211.
${ }^{7}$ P. T. Lansbury and E. J. Nienhouse, J. Amer. Chem. Soc., 1966, 88, 4290.
${ }^{8}$ P. T. Lansbury, Accounts Chem. Res., 1972, 5, 311.
is as shown and this suggests several other heterocyclic synthetic possibilities; for example the chloroallyl

group acts also as an electrophile in the case of 2 -(2chloroallylamino)pyridine, which reacts with polyphosphoric acid yielding 3 -methylimidazo[1,2-a]pyridine (XIII). This mode of reaction is common in alkenes ${ }^{6}$

(XIV)

(XX)
and is the converse of the principle developed by Lansbury ${ }^{7,8}$ whereby an electrophilic centre attacks a chloroallyl group in the same molecule leading to a cyclisation.

1,5,6,7-Tetrahydroindol-4-ones, which have been made by electrophilic cyclisation of enamines of cyclohexane1,3 -diones ${ }^{9}$ and by other methods, ${ }^{10}$ are useful precursors of 4 -substituted indoles. ${ }^{11}$ It was of interest to find out whether N-(2-chloroallyl)enamines (XVI) underwent cyclisation to $1,5,6,7$-tetrahydroindol-4-ones and, if so, whether they gave the 2 - or the 3 -methyl isomers. In the event, the N-ethyl compound (XVI;

$\mathrm{R}=\mathrm{Et}$), when heated with polyphosphoric acid, gave a substance, $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}$, which was deduced from spectral data (see Experimental section) to be the 3 -methyl isomer (XVII; $\mathrm{R}=\mathrm{Et}, \mathrm{X}=3-\mathrm{Me}$) and differed from the 2 -methyl isomer (XVII; $\mathrm{R}=\mathrm{Et}, \mathrm{X}=2$-Me), made by a literature method ${ }^{12}$ [from (XVIII)]. Thus in this case, the mechanism of cyclisation involves the chloroallyl group acting as an electrophile as shown (XVI), and this method complements those already reported. ${ }^{9-12}$

We next examined the case (XVI ; $\mathrm{R}=\mathrm{Ph}$) where the starting material was both an enamine and an arylamine, to find out whether a $1,5,6,7$-tetrahydro-indol-4-one or an N-substituted indole was obtained.

[^1]${ }^{12}$ H. J. Schaeffer and R. Vince, J. Org. Chem., 1962, 27, 4503.

The former was in fact produced（XVII； $\mathrm{R}=\mathrm{Ph}$ ， $\mathrm{X}=3-\mathrm{Me}$ ）and shown to be different from the 2 －methyl isomer made by the reaction of aniline with 2 －acetonyl－ 5,5 －dimethylcyclohexane－1，3－dione ${ }^{12}$（XVIII）．The p－ chlorophenyl compound（XVII； $\mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}, \mathrm{X}=$ $3-\mathrm{Me}$ ）was also made．Probably the reduced basicity of the nitrogen atom in（XVI）inhibits cyclisation（with rearrangement）onto the benzene ring；in these cases there is no question of an aza－Claisen rearrangement ${ }^{13}$ taking place since the 2 －isomer was never found．Similar results were obtained by using $\mathrm{BF}_{3}-\mathrm{MeOH}$ but neither polyphosphoric acid nor $\mathrm{BF}_{3}-\mathrm{MeOH}$ caused compound （XIV）to cyclise to a pyrrole．

None of our results allow a decision to be made amongst the various mechanisms possible for the con－ version of N －（ 2 －chloroallyl）anilines to 2 －methylindoles，${ }^{2-4}$ but we confirm that this is a versatile and convenient method．

EXPERIMENTAL

2－Methylindoles：General Methods（see Table）．－（A）The N－（2－chloroallyl）arylamine（ 5 g ）was stirred and heated at
Conversion of 2 －chloroallylanilines into 2 －methylindoles

2－Methylindole	Method	Temp． $\left({ }^{\circ} \mathrm{C}\right)$	Time （h）	$\begin{aligned} & \text { M.p. } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	Yield （\％）
Parent ${ }^{\text {a }}$ b	A	105	54	56－58	39
1－Me ${ }^{\text {a }}$	A	110	33	$54-55$	74
$4-\mathrm{Me}$ 。	A	100	12	$98{ }^{\text {d }}$	5
$6-\mathrm{Me}$ 。	A	100	12	102	20
$5-\mathrm{Me}$ 。	A	100－110			25^{\prime}
$7-\mathrm{Ph}$ 9	A	105	23	103－104	41
$7-\mathrm{Ph}$ 。	B	134－138	14	103－104	60
$5-\mathrm{Cl}^{4}$	A	100－105	24	115－116	50
$5-\mathrm{MeO}_{2} \mathrm{C}$ ；	B	149－152	9	139	51
$7-\mathrm{MeO}_{2} \mathrm{C}^{\text {3 }}$	B	152	7	$\begin{aligned} & \text { (b.p. } 110 \text { at } \\ & 0.05 \mathrm{mmHg} \text {) } \end{aligned}$	75
1－MeO2 ${ }_{2} \cdot\left[\mathrm{CH}_{2}\right]_{2}{ }^{\text {k }}$	A	99－101	10	$\begin{aligned} & \text { (b.p. } 110 \mathrm{at} \\ & 0.01 \mathrm{mmHg} \text {) } \end{aligned}$	33

${ }^{a}$ Ref．2．${ }^{b}$ Identical with commercial sample．${ }^{e}$ Found： C， $74.2 ; \mathrm{H}, 6.9 ; \mathrm{N}, 8.3 . \quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}$ requires C， $74.6 ; \mathrm{H}, 6.9$ ； $\mathrm{N}, 8.7 \%, \tau 2.25 \mathrm{br}(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 2.9-3.6(3 \mathrm{H}, \mathrm{m}$ ，aryl）， 3.72 $(1 \mathrm{H}, \mathrm{s} .3-\mathrm{H}), 6.1(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$ ，and $7.65(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ ．${ }^{d}$ From light petroleum（b．p． $60-80^{\circ}$ ）．©T．Wieland and K．Ruehl， Chem．Ber．，1963，96，260；R．A．Heacock and O．Hutzinger， J ．Chem．Soc．，1965，3902．＇Contaminated with starting material．＇A．N．Kost，I．P．Rudakova，and A．P． Yakubov，Zhur．org．Khim．，1965，1， 124 （Chem．Abs．，
 $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{2}$ requires $\mathrm{C}, 69.85 ; \mathrm{H}, 5.8 ; \mathrm{N}, 7.4 \%, \tau 1.78-2.84$ $(4 \mathrm{H}, \mathrm{m}$ ，aromatic and NH$), 3.75(1 \mathrm{H}, \mathrm{s}), 6.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right)$ ， and $7.62\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ ；sublimed in vacuo．${ }^{j}$ Found M^{+}， 189．0795． $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{2}$ ，requires M ，189．0790．Hydrolysis yielded the corresponding acid，m．p． 183 － 184°［from benzene－ light petroleum（b．p．40－60 ）］（Found：C，69．0；H，5．3； $\mathrm{N}, 7.9 . \quad \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{2}$ requires $\mathrm{C}, 68.6 ; \mathrm{H}, 5.15 ; \mathrm{N}, 8.0 \%$ ）， т $-0.8 \mathrm{br}\left(1 \mathrm{H}, \mathrm{s}\right.$, exch．， $\left.\mathrm{CO}_{2} \mathrm{H}\right), 0.5 \mathrm{br}(\mathrm{iH}, \mathrm{s}$ ，exch．， NH$), 2.07-$ $3.0(3 \mathrm{H}, \mathrm{m}, \operatorname{aryl}), 3.74(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$ ，and $7.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ ． ${ }^{k}$ Obtained as acid and re－esterified（Found：C， $72.0 ; \mathrm{H}, 7.1$ ； $\mathrm{N}, 6.65 . \mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires $\mathrm{C}, 71.9 ; \mathrm{H}, 6.9 ; \mathrm{N}, 6.45 \%$ ），τ $2.4-3.03\left(4 \mathrm{H}, \mathrm{m}\right.$ ，aryl）， $3.80(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 5.67\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right)$ ， $6.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 7.32\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right)$ ，and $7.6(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ ．
$c a .100{ }^{\circ} \mathrm{C}$ for the time shown．The cooled mixture was poured into ice（excess）and extracted with chloroform． The products were purified in the usual way by chromato－ graphy on silica gel unless stated otherwise．
${ }^{13}$ M．Schmid，H．J．Hansen，and H．Schmid，Helv．Chim．Acta， 1973，56， 105.
${ }^{14}$ I．McCall，G．R．Proctor，and L．Purdie，J．Chem．Soc．（C）， 1970， 1126.
（B）The N－（2－chloroallyl）arylamine（ $3-5 \mathrm{~g}$ ）and boron trifluoride－methanol complex（Aldrich）$(50 \mathrm{ml})$ were stirred and heated for the time and at the temperature shown． After cooling，the mixture was poured into cold water and extracted with chloroform，and the product was obtained as before．

N －（2－Chloroallyl）anilines．－These were in general made by heating and stirring the corresponding anilines with 2,3 －dichloro－or 2 －chloro－3－iodopropene ${ }^{14}$ and anhydrous potassium carbonate and distilling the products in vacuo． Many were unstable；some gave satisfactory elemental analyses and all were used as obtained provided that n．m．r． analysis indicated no gross impurities．
$\mathrm{N}-(2-$ Chloroallyl）dibenz $[\mathrm{b}, \mathrm{f}]$ azepine \quad（VII；$\quad \mathrm{R}=$ $\mathrm{CH}_{2}: \mathrm{CCl} \cdot \mathrm{CH}_{2}$ ）．－The dibenzazepine crystallised from methanol as flakes，m．p． $80-81^{\circ}$（Found：C，76．45；H， $5.25 ; \mathrm{N}, 5.1 . \mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ClN}$ requires $\mathrm{C}, 76.3 ; \mathrm{H}, 5.25 ; \mathrm{N}$ ， 5.25% ）．Compounds（VIII）and（IX）were obtained as previously described．${ }^{15}$

4－［N－（2－Chloroallyl）－m－methoxyanilino］butyric Acid．－－N－ （2－Chloroallyl）－m－anisidine（b．p． 102° at $0.5 \mathrm{mmHg} ; 34.3 \mathrm{~g}$ ） was stirred with ethyl 4 －bromobutyrate（ 38 g ）and an－ hydrous potassium carbonate（ 20 g ）at $100^{\circ} \mathrm{C}$ for 3 days． Ethyl 4－bromobutyrate（ 30 g ）and potassium carbonate $(24 \mathrm{~g})$ were then added and heating and stirring were continued for a further 3 days．Treatment of the crude ester with sodium hydroxide in ethanol gave the sodium salt of the product，m．p． 70°（from acetone）（Found：C， $54.8 ; \mathrm{H}, 5.6 ; \mathrm{N}, 5.0 . \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{ClNNaO}_{3}$ requires $\mathrm{C}, 55.05$ ； $\mathrm{H}, 5.6 ; \mathrm{N}, 4.6 \%), \tau\left(\mathrm{D}_{2} \mathrm{O}\right) 2.8-3.0(1 \mathrm{H}, \mathrm{m}$ ，aryl），3．6－3．8 $(3 \mathrm{H}, \mathrm{m}$, aryl $), 4.8\left(2 \mathrm{H}\right.$, dd，vinyl）， $6.0\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.3(3 \mathrm{H}$ ， $\mathrm{s}, \mathrm{OMe}), 6.6-7.82\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 7.7-7.9\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$ ， and $8.05-8.35\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$ ．Addition of dilute hydro－ chloric acid gave the acid（ 39 g ），b．p． 175° at 0.05 mmHg （Found：C，60．0；H，6．4． $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{ClNO}_{3}$ requires $\mathrm{C}, 59.4$ ； $\mathrm{H}, 6.4 \%$ ），which slowly darkened．

This acid（ 5.6 g ）was stirred at $110^{\circ} \mathrm{C}$ for 9 h ．Chromato－ graphy then gave 5，6－dihydro－2－methyl－10－methoxyazepino－ $[3,2,1$－hi］indol－7（4H）－one（IV）（ 620 mg ），which crystallised from light petroleum（b．p． $80-100^{\circ}$ ）in yellow needles， m．p． $145-146^{\circ}$（Found：C，73．3；H，6．7；N，6．1\％；M^{+}， 229．11064． $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires $\mathrm{C}, 73.4 ; \mathrm{H}, 6.6$ ； $\mathrm{N}, 6.1 \%$ ； $M, 229.11027$ ），$\tau 2.05$（ $1 \mathrm{H}, \mathrm{d}, 8-\mathrm{H}$ ）， 3.5 （ $1 \mathrm{H}, \mathrm{d}, 9-\mathrm{H}$ ）， 3.62 $(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 5.95(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 6.1(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 7.02(2 \mathrm{H}$ ， $\mathrm{m}, 4-\mathrm{H}), 7.67(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ ，and $7.6-7.9(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), \nu_{\max }$ $\left(\mathrm{CHCl}_{3}\right) 1645 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$ ．

7－Chloro－4－［N－（2－chloroallyl）ethylamino］quinoline（V； $\mathrm{R}=\mathrm{Et})$ ． 4,7 －Dichloroquinoline $(6.89 \mathrm{~g})$ and N－（2－chloro－ allyl）ethylamine ${ }^{16}(12 \mathrm{~g})$ were stirred and kept at $160{ }^{\circ} \mathrm{C}$ for 5 h ．Work－up as usual followed by chromatography on silica（elution with ether）gave the product as a syrup（ 6.67 g ， 68% ）（Found：C，59．7；H，5．05；N，9．8． $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2}$ requires $\mathrm{C}, 59.8 ; \mathrm{H}, 5.0 ; \mathrm{N}, 9.95 \%)$ ；$\tau 1.35$（ $1 \mathrm{H}, \mathrm{d}$ ，aryl）， $1.95(\mathrm{lH}$, s，aryl）， $2.0(1 \mathrm{H}, \mathrm{d}$ ，aryl）， $2.62(1 \mathrm{H}, \mathrm{d}$ ，aryl）， 3.17 （ $1 \mathrm{H}, \mathrm{d}$ ，aryl）， $4.4-4.6\left(2 \mathrm{H}, \mathrm{m}\right.$, vinyl）， $5.97\left(2 \mathrm{H}, \mathrm{s}, \mathrm{N} \cdot \mathrm{CH}_{2}\right)$ ， $6.6\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2}\right)$ ，and $8.82\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{3}\right)$ ．
7－Chloro－1－ethyl－2－methylpyrrolo［3，2－c］quinoline（VI； $\mathrm{R}=$ Et ）．－The preceding amine（ 1.23 g ）and polyphosphoric acid were stirred at $90-94{ }^{\circ} \mathrm{C}$ for 5.5 h ．Work－up gave the product（ $0.45 \mathrm{~g}, 42 \%$ ）as needles，m．p． $107.5-109.5^{\circ}$ （Found：C，69．15；H，5．45；N，11．45． $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{ClN}_{2}$ requires
${ }^{15}$ M．Lennon，A．McLean，I．McWatt，and G．R．Proctor，J．C．S． Perkin I，1974， 1828.
${ }_{16}$ A．G．Bottini and J．D．Roberts，J．Amer．Chem．Soc．，1957， 76， 1462.

C, 68.7 ; H, 5.3 ; N, 11.45%), $\tau 1.02(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 1.86-2.75$ $\left(3 \mathrm{H}, \mathrm{m}\right.$, aryl), $3.23(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 5.72\left(2 \mathrm{H}, \mathrm{q}, \mathrm{N} \cdot \mathrm{CH}_{2}\right), 7.67$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, and $8.57\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{3}\right)$. Neutralisation of the aqueous acidic layer, gave 7-chloro-4-ethylaminoquinoline (0.22 g), m.p. $177-177.5^{\circ}$ (Found: C, 63.8; H, 5.35 ; N, 13.3. $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{ClN}_{2}$ requires $\mathrm{C}, 63.9 ; \mathrm{H}, 5.35 ; \mathrm{N}, 13.55 \%$), $\tau 1.51(1 \mathrm{H}, \mathrm{d}), 2.08(\mathrm{lH}, \mathrm{s}), 2.36(\mathrm{lH}, \mathrm{d}), 2.81(\mathrm{lH}, \mathrm{d})$, $3.64(1 \mathrm{H}, \mathrm{d}), 4.75-5.05 \mathrm{br}(1 \mathrm{H}, \mathrm{s}$, exch., NH$), 6.7(2 \mathrm{H}, \mathrm{m}$, $\mathrm{N} \cdot \mathrm{CH}_{2}, \mathrm{q}$ with $\mathrm{D}_{2} \mathrm{O}$ added), and $8.65\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{3}\right)$.

7-Chloro-2-methyl-1-phenylpyrrolo[3,2-c]quinoline
(VI; $\mathrm{R}=\mathrm{Ph}$).- 7-Chloro-4-[N -(2-chloroallyl)anilino]quinoline $(2.6 \mathrm{~g})$ was made by stirring 4,7 -dichloroquinoline (7.67 g), N-(2-chloroallyl)aniline (14.6 g), and hydrochloric acid $(40 \mathrm{ml} ; 2 \mathrm{~N})$ at $144^{\circ} \mathrm{C}$ for 5.5 h . After chromatography this intermediate (2.09 g) was stirred with polyphosphoric acid $(100 \mathrm{~g})$ at $74-78{ }^{\circ} \mathrm{C}$ for 11 h . The product $(0.56 \mathrm{~g}, 30 \%)$, m.p. 158-160 , crystallised from light petroleum (b.p. $60-80^{\circ}$) (Found: C, 74.2; H, 4.65; N, 9.3. $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{ClN}_{2}$ requires $\mathrm{C}, 73.8 ; \mathrm{H}, 4.45 ; \mathrm{N}, 9.6 \%), \tau 0.9(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H})$, $1.88(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 2.4-2.95(7 \mathrm{H}, \mathrm{m}$, aryl), $3.07(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$, and $7.57\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.

3-A cetonyl-2,4,6-trimethylaniline (X). -N -(2-Chloroallyl)-2,4,6-trimethylaniline, b.p. $92-95^{\circ}$ at 0.5 mmHg (Found: M^{+}, 209.0903. $\mathrm{C}_{12} \mathrm{H}_{18}{ }^{35} \mathrm{ClN}$ requires $M, 209.0971$) (5.51 g), and polyphosphoric acid (120 g) were stirred at $104-108{ }^{\circ} \mathrm{C}$ for 18 h . The product ($4.12 \mathrm{~g}, 96 \%$) gave needles, m.p. $73-74^{\circ}$ (Found: C, 75.0; H, 8.95; N, 7.35. $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}$ requires $\mathrm{C}, 75.4 ; \mathrm{H}, 8.9 ; \mathrm{N}, 7.3 \%$), $\tau 3.28$ ($1 \mathrm{H}, \mathrm{s}$, aryl), $6.33\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.6 \mathrm{br}\left(2 \mathrm{H}, \mathrm{s}\right.$, exch., $\left.\mathrm{NH}_{2}\right)$, and $7.88,7.92$, 7.96 , and $8.02(12 \mathrm{H}, 4 \mathrm{~s}, \mathrm{Me})$.

Methyl N -Acetyl-N-(2-chloroallyl)anthranilate.-This was made by treating methyl N-(2-chloroallyl)anthranilate ${ }^{17}$ with acetic anhydride at $160^{\circ} \mathrm{C}$ for 7 h , and crystallised in needles, m.p. $94-94.5^{\circ}$ (Found: C, 58.7; H, 5.35; N, 5.0. $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{ClNO}$ requires $\mathrm{C}, 58.3 ; \mathrm{H}, 5.25$; $\mathrm{N}, 5.25 \%$).

N -(2-Chloroallyl)-4-hydroxyquinolin-2-one (XI).-Treatment of the preceding compound (27 g) with sodium hydride ($25 \mathrm{~g}, 60 \%$) in toluene (700 ml) gave the product ($13 \mathrm{~g}, 54 \%$) from ethanol as a yellow powder, m.p. 239° (Found: C, $60.95 ; \mathrm{H}, 4.3 ; \mathrm{N}, 6.1 . \mathrm{C}_{12} \mathrm{H}_{10} \mathrm{ClNO}_{2}$ requires C, 61.15 ; H, 4.25 ; N, 5.95%).

2-Methyloxazolo[3,2-a]quinolin-5-one (XII). $-N$-(2-Chloro-allyl)-4-hydroxyquinolin-2-one (1.45 g) and polyphosphoric acid (50 g) were stirred at $100-110{ }^{\circ} \mathrm{C}$ for 5 h . The product ($1.1 \mathrm{~g}, 89 \%$) crystallised from water in needles, m.p. 225° (Found: C, 72.25 ; H, $4.6 ; \mathrm{N}, 7.0 \% ; M^{+}, 199.0633$. $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NO}_{2}$ requires $\mathrm{C}, 72.35 ; \mathrm{H}, 4.5 ; \mathrm{N}, 7.0 \% ; M$, 199.0633), $\tau 1.37(1 \mathrm{H}, \mathrm{d}, 6-\mathrm{H}), 1.7-2.2(4 \mathrm{H}, \mathrm{m}, 4-\mathrm{F}, 7-, 8-$, $9-\mathrm{H}), 2.7(\mathrm{lH}, \mathrm{s}, 1-\mathrm{H})$, and $7.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.

2-(2-Chloroallylamino)pyridine.-2-Aminopyridine (23.7 g), dry dimethylformamide (200 ml) and sodium hydride ($13 \mathrm{~g}, 50 \%$) were stirred at $80^{\circ} \mathrm{C}$ for 18 h . 2,3-Dichloropropene (28 g) was added; after 5 h stirring and heating, more 2,3 -dichloropropene (11 g) was added and heating was continued for 10 h . The product ($23.7 \mathrm{~g}, 67 \%$) had b.p. $100-110^{\circ}$ at 0.1 mmHg (Found: C, $56.7 ; \mathrm{H}, 5.6 ; \mathrm{N}, 16.2$. $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{ClN}_{2}$ requires $\mathrm{C}, 57.0 ; \mathrm{H}, 5.35 ; \mathrm{N}, 16.6 \%$).

3-Methylimidazo[1,2-a]pyridine (XIII).-The previous compound (3.3 g) and polyphosphoric acid (100 g) were stirred at $95-100{ }^{\circ} \mathrm{C}$ for 7 h . The product ($0.86 \mathrm{~g}, 39 \%$) was purified by sublimation in vacuo and had m.p. 63.5° (lit., ${ }^{18} 63.5^{\circ}$) (Found: C, 72.7; H, 6.3; N, 20.85. Calc. for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2}$: $\mathrm{C}, 72.75 ; \mathrm{H}, 6.05 ; \mathrm{N}, 21.2 \%$), $\tau 2.24$ and

[^2]$2.46(2 \mathrm{H}, 2 \mathrm{~d}), 2.64(1 \mathrm{H}, \mathrm{s}), 2.92$ and $3.26(2 \mathrm{H}, 2 \mathrm{t})$, and $7.62(3 \mathrm{H}, \mathrm{s})$.

1-Ethyl-1,5,6,7-tetrahydro-3,6,6-trimethylindol-4-one
(XVII; $\quad \mathrm{X}=3-\mathrm{Me}, \quad \mathrm{R}=\mathrm{Et}$). -N -(2-Chloroallyl) $-\mathrm{N}-(5,5-$ dimethyl-3-oxocyclohex-1-enyl)ethylamine (XVI; $\mathrm{R}=\mathrm{Et}$) $(2.83 \mathrm{~g})$ [from dimedone and N-(2-chloroallyl)ethylamine] and polyphosphoric acid (100 g) were stirred at $102-105^{\circ} \mathrm{C}$ for 22 h . Chromatography [elution with methylene chloride-diethyl ether ($9: 1$)] gave the product (1.15 g , 48%), which crystallised from light petroleum (b.p. 60$80^{\circ}$) as plates, m.p. 73-74 (Found: C, 76.45; H, 9.45; $\mathrm{N}, 7.05 \%$; $M^{+}, 205.1467 . \quad \mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}$ requires $\mathrm{C}, 76.1$; $\mathrm{H}, 9.25 ; \mathrm{N}, 6.85 \%$; $M, 205.1467$), $\tau 3.68(\mathrm{lH}, \mathrm{s}, 2-\mathrm{H}), 6.25$ $\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2}\right), 7.46\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.73\left(5 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right.$ and Me$)$, $8.68(3 \mathrm{H}, \mathrm{t}, \mathrm{Me})$, and $8.9(6 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $v_{\max }$ (Nujol) 1645 $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{O})$. Elution with diethyl ether-methanol $(9: 1)$ yielded N -(2-chloroprop-1-enyl)-N-(5,5-dimethyl-3-oxocyclo-hex-1-enyl)ethylamine ($\mathrm{XV} ; \mathrm{R}=\mathrm{Et}$) $(0.69 \mathrm{~g}, 25 \%$) as a gum (Found: $\mathrm{C}, 64.45 ; \mathrm{H}, 8.55 ; \mathrm{N}, 5.7 . \mathrm{C}_{13} \mathrm{H}_{20} \mathrm{ClNO}$ requires $\mathrm{C}, 64.6 ; \mathrm{H}, 8.3 ; \mathrm{N}, 5.8 \%)$, $\tau 3.9(1 \mathrm{H}, \mathrm{d}$, vinyl), $4.73\left(1 \mathrm{H}, \mathrm{s}\right.$, vinyl), $6.56\left(2 \mathrm{H}, \mathrm{q}, \mathrm{N} \cdot \mathrm{CH}_{2}\right), 7.73\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$, $7.81\left(5 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right.$ and Me$), 8.8(3 \mathrm{H}, \mathrm{t}, \mathrm{Me})$, and $8.9(6 \mathrm{H}, \mathrm{s}$, Me), $\nu_{\text {max }}$ (film) $1623 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$.

1-Ethyl-1,5,6,7-tetrahydro-2,6,6-trimethylindol-4-one
(XVII; $\quad \mathrm{X}=2 \mathrm{Me}, \quad \mathrm{R}=\mathrm{Et}$).-2-Acetonyl-5,5-dimethyl-cyclohexane-1,3-dione ${ }^{12}(2.5 \mathrm{~g})$, methanol (30 ml), and ethanolic ethylamine ($10 \mathrm{ml}, 33 \%$) were kept at $160^{\circ} \mathrm{C}$ for 15 h in a pressure bottle. The product ($1.66 \mathrm{~g}, 63.5 \%$) crystallised from benzene-light petroleum (b.p. 60-80 $)$ as plates, m.p. $106-108^{\circ}$ (Found: C, 76.3 ; H, $9.35 ; \mathrm{N}$, 6.7. $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}$ requires $\mathrm{C}, 76.1 ; \mathrm{H}, 9.25 ; \mathrm{N}, 6.8 \%$); $\tau 3.83(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 6.24\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2}\right), 7.45\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$, $7.74\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.81(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 8.77(3 \mathrm{H}, \mathrm{t}, \mathrm{Me})$, and $8.9(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}), v_{\max }$ (Nujol) $1638 \mathrm{~cm}^{-1}$ (C=O).

1,5,6,7-Tetrahydro-3,6,6-trimethyl-1-phenylindol-4-one
(XVII; $\mathrm{R}=\mathrm{Ph}, \mathrm{X}=3$-Me). $-N$-(2-Chloroallyl) $-N$-(5,5-di-methyl-3-oxocyclohex-1-enyl)aniline (XVI; $\mathrm{R}=\mathrm{Ph}$) (2.67 g) [from dimedone and N-(2-chloroallyl)aniline] and polyphosphoric acid (90 g) were stirred at $100-104{ }^{\circ} \mathrm{C}$ for 22 h . The product ($0.91 \mathrm{~g}, 39 \%$), sublimed in vacuo, had m.p. 200-201 ${ }^{\circ}$ (Found: C, 80.35; H, 7.6; N, 5.45%; $M^{+}, 253.1436 . \quad \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}$ requires $\mathrm{C}, 80.65 ; \mathrm{H}, 7.5 ; \mathrm{N}$, $5.55 \% ; M, 253.1467), \tau 2.4-2.9(5 \mathrm{H}, \mathrm{m}$, aryl), $3.43(1 \mathrm{H}$, $\mathrm{s}, 2-\mathrm{H}), 7.4\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.63(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 7.82(2 \mathrm{H}, \mathrm{s}$, CH_{2}), and $8.9(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}), \nu_{\max }$ (Nujol) $1648 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$.

1-p-Chlorophenyl-1,5,6,7-tetrahydro-3,6,6-trimethylindol-4one (XVII; $\mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}, \mathrm{X}=3-\mathrm{Me}$). -This was made in similar fashion (30%) and had m.p. 142° (Found: C, 71.2; $\mathrm{H}, 6.3$; $\mathrm{N}, 4.75$. $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ClNO}$ requires $\mathrm{C}, 71.1 ; \mathrm{H}, 6.3$; N, 4.85\%).

1,5,6,7-Tetrahydro-2,6,6-trimethyl-1-phenylindol-4-one
(XVII; $\quad \mathrm{R}=\mathrm{Ph}, \quad \mathrm{X}=2$-Me).-2-Acetonyl-5,5-dimethyl-cyclohexane-l, 3-dione ${ }^{12}(3.7 \mathrm{~g})$, aniline (2 g), and glacial acetic acid (50 ml) were refluxed for 0.75 h . The product $(4.23 \mathrm{~g}, 88 \%)$ crystallised from ethanol in needles, m.p. $145-146^{\circ}$ (Found: C, 80.55; H, 7.55; N, 5.3. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}$ requires $\mathrm{C}, 80.65 ; \mathrm{H}, 7.5 ; \mathrm{N}, 5.55 \%), \tau 2.48-2.86(5 \mathrm{H}, \mathrm{m}$, aryl), $3.68(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 7.62\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.68(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2}\right), 7.97(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, and $8.95(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}), \nu_{\max }$ (Nujol) $1653 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$.

Dimethyl 2-[N-(2-Chloroallyl)ethylamino]maleate (XIV).Dimethyl acetylenedicarboxylate (3.84 g), N-(2 -chloroallyl)ethylamine ${ }^{16}(4.2 \mathrm{~g})$, and dry benzene (100 ml) were
${ }^{18}$ W. W. Paudler and H. L. Blewitt, J. Org. Chem., 1965, 30, 4081.
stirred and refluxed for 16 h . Chromatography and distillation (b.p. 100° at 0.1 mmHg) gave the product ($6.42 \mathrm{~g}, ~ 91 \%$) (Found: C, $50.2 ; \mathrm{H}, 6.05 ; \mathrm{N}, 5.1$. $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{ClNO}_{4}$ requires $\mathrm{C}, 50.5 ; \mathrm{H}, 6.1 ; \mathrm{N}, 5.35 \%$).

We thank the S.R.C. for a studentship (to B. McD.), Dr. G. R. Birchall (I.C.I. Pharmaceuticals) for discussions, and Dr. A. McLean for technical assistance.
[4/2704 Received, 30th December, 1974]

[^0]: ${ }^{1}$ E. B. Towne and H. M. Hill, U.S.P. 2,607,779/1952 (Chem. Abs., 1953, 47, 5452).
 ${ }^{2}$ 'Yu. A. Degutis and V. P. Barkauskas, Khim. geterotsikl. Soedinenii, 1969, 5, 1003.

[^1]: ${ }^{9}$ J. M. Bobbitt and C. P. Dutta, Chem. Comm., 1968, 1429.
 ${ }^{10}$ H. Stetter and R. Lauterbach, Annalen, 1962, 655, 20.
 ${ }^{11}$ W. A. Remers, R. H. Roth, G. J. Gibbs, and M. J. Weiss, J. Org. Chem., 1971, 36, 1232.

[^2]: ${ }^{17}$ D. N. Gupta, I. McCall, A. McLean, and G. R. Proctor, J. Chem. Soc. (C), 1970, 2191.

